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1. INTRODUCTION 

The work described in this report has to do with the problem of vision or camera-based 
navigation. In these problems, it is often necessary to map the location of some feature or object, 
which is subsequently used when calculating the position of a camera-based navigation system user. 
Mapping the location of this feature relative to some known location is easy; one simply needs to 
know a direction and distance from the known point to the feature point. However, it is not always 
practical or possible to measure the distance to an object (e.g., in robotics, finding the location of a 
visual landmark that a robot can see, but not reach with a laser rangefinder or mechanical arm). All is 
not lost, however. It is possible to map the location of the visual landmark if the robot can measure 
the angle towards it from two other known positions. The distance to the landmark can be deduced 
from the angles. 

Triangulation, which this technical report discusses, is the act of mapping a feature using 
information about the direction towards a landmark from two or more known locations. This report 
focuses on a method of solving for the location of a visual landmark—a feature point appearing in 
two or more images—using a linear least squares algorithm. Although it does not perform as 
optimally in terms minimizing position error as non-linear, iterative triangulation algorithms1, the 
linear least squares approach is fast, fixed-cost, and suitable for machine computation. Furthermore, 
because the least squares algorithm has a closed-form solution, it simple to propagate uncertainties in 
camera position and orientation to uncertainty in the three-dimensional (3-D) location of the feature 
point. 

The approach described in this report was developed to triangulate visual landmarks identified in 
images from two locations taken with a calibrated camera. This report assumes the locations of the 
camera are extracted from a navigation system, which gives the camera position in the north-east-
down (NED) local coordinate frame and camera orientation in the so-called “National Aeronautics 
and Space Administration (NASA) Aerospace 3-2-1 Euler angles”2. The result is a closed-form 
equation that maps 16 variables (roll, pitch, yaw, NED position coordinates for each camera location; 
and pixel coordinates for each image) to three variables, the x, y, and z coordinates of the feature 
point.  

This report also presents a method for estimating the error in the triangulation solution as well as 
an evaluation of the performance of the error estimation. To estimate the error of the triangulation 
algorithm, the triangulation equation is linearized about the given inputs using a first-order Taylor 
expansion. The triangulation equation must be linearized because the values used in the linear-least 
squares problem are non-linear functions of the camera orientation. The linearization allows the error 
covariance of the 16 input variables to be mapped to the error covariance of the 3-D point location. 
To examine the performance of the error estimation algorithm, we run Monte Carlo simulations with 
noisy camera positions and Euler angles and compare the distribution of the outputs with the 
expected distribution. The result is an estimate of the visual landmark’s location in three dimensions 
with an accurate description of the uncertainty in the position. With the triangulation and error-
estimation algorithms, it is possible to accurately locate visual landmarks and describe the 
uncertainty of the landmark’s position coordinates. 
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2. TRIANGULATION IN A EUCLIDEAN FRAME 

We will first demonstrate a method for solving the triangulation problem with vector algebra in a 
general Euclidean reference frame, and then show how these vectors can be extracted from camera 
and navigation-filter output. The triangulation algorithm first uses position and direction information 
to determine the distance to the feature point from each known location, and then assigns a location 
to the feature point by adding these distances to each of the observation locations. 

 Phrasing the triangulation problem in terms of vectors is straightforward. To locate an unknown 
point from two known observation points, four pieces of information are needed: the location of each 
observation point, and a direction from each observation point to the unknown point. 

This information can be described with four column vectors: T1, T2,  R3, which describe the 
location of each observation point in the navigation frame, and d1, d2  R3, which are vectors that 
point from the observation point to the landmark. These quantities are illustrated in Figure 1. 

 
Figure 1. The variables needed for the triangulation of an unknown point X. 

The unknown point, X, lies at a distance λ1 along the ray defined by extending the vector d1 from 
the point T1. The same is true for some distance λ2 along the ray defined by d2 and T2. The unknown 
point is located at intersection of these two line-of-sight vectors, as shown in Figure 2. 

 
Figure 2. The landmark, X, exists at the intersection of rays extended from each observation point 
(T1 and T2) towards the landmark. 

This geometric construction leads to the equality: 

 
222111 TdTdX   . (1)
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Here, the terms λ1d1+T1 and λ2d2+T2 are the line-of-sight vectors, representing a ray drawn from 
each observation location to the feature point. The unknown point, X, can be found by first solving 
for the depth scalars λ1, λ2, and then plugging in to Equation (1) to solve for X.  

2.1 SOLVING FOR DEPTH 

Rearranging Equation (1) gives an equation that can easily solve for depth: 

 
122211 TTdd  . (2)

For convenience, T ≡ T2 – T1. Using this definition, Equation (2) above can be written as the 
following vector equation: 
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Solving this using linear least squares will yield the depths λ1, λ2 that minimize the distance 
between λ1d1-λ2d2, and T. In other words, this attempts to form a triangle with sides λ1d1, λ2d2, and 
T, as shown in Figure 3.  

 

Figure 3. The linear least squares algorithm finds the λ1, λ2 such that the vectors λ1d1, λ2d2, and T 
form a triangle. 

Solving Equation (3) using linear least squares leads to the expression: 
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(4)

With this closed-form solution for the depths, the location of the unknown point X can be easily 
found by back projecting each depth from each observation point. Rearranging Equation (1) to 
illustrate the effect of both depths on the solution leads to 
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In two-dimensions, this solution is identical to solving for X using only one observation direction 
and one depth. The next section discusses the purpose and geometric meaning of the average of the 
two solutions. 

2.2 THE EFFECT OF LINEAR LEAST SQUARES ON THREE-DIMENSIONAL TRIANGULATION 

In two dimensions, the rays from each observation always intersect if they are not parallel. In 
three dimensions, due to noise, the rays usually not intersect. However, as long as the two rays are 
not parallel, the least squares algorithm described above will give a solution that can be used as an 
estimate of the feature point’s location. In what follows, we describe the geometric meaning of this 
estimate. 

The solution generated by the linear least squares algorithm is the point where the lines almost 
intersect. To be more precise, the position estimate X from Equation (5) gives the mid-point of the 
shortest line-segment that connects the two line-of-sight vectors, λ1d1+T1 and λ2d2+T2. This is best 
illustrated by demonstrating which norm is minimized by the least squares estimate for depth in 
Equation (4). 

 

Figure 4. The linear least squares algorithm will find a λ1 and λ2 that minimize the magnitude of the 
expression |λ1 d1 – λ2 d2 – T|. 

As seen in Figure 4, the least squares method calculates the depths that minimize the error 
between the vector difference, λ1 d1 – λ2 d2, and the estimate of camera translation, T. This is 
equivalent to calculating the projection of T onto the plane defined by d1 and d2. When these depths 
are independently used in reconstruction from each view, the two reconstructions are inconsistent, as 
shown in Figure 5. 

 
Figure 5. The 3-D reconstructions from back-projecting each view may be slightly different. The final 
estimate of the point will be the average of the two back-projections. 
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Averaging the results of the two back-projections produces a solution for the unknown position. 
We will use this solution as our final estimate of the feature point’s position. This algorithm can now 
be used in general to triangulate a 3-D location. Adapting this algorithm for use with cameras and 
navigation filters will require models for camera behavior and extracting Euclidean camera location 
and orientation from navigation filter outputs. 

3. ADAPTING TO A PINHOLE CAMERA MODEL AND NAVIGATION 
     FILTER 

As we have seen, the only information needed to triangulate the location of an unknown point is 
the line-of-sight vectors toward the feature point from two known locations. This information can be 
extracted from the output of a navigation filter. The location of each observation point is the position 
output of the navigation filter at the time an image was taken, corrected for lever-arm effects if the 
camera is not co-located with the navigation system. Determining the line-of-sight vector in the 
navigation frame is more complicated because it requires knowledge of the attitude of the observer, 
lever-arm effects, and camera calibration. Three transformations are required for mapping a feature’s 
image coordinates to a 3-D line-of-sight vector in the navigation frame: 

1. A transformation to convert a feature’s u,v pixel coordinates to a 3-D line-of-sight 
vector in the camera’s frame of reference. 

2. A transformation to map this 3-D line-of-sight vector from the camera’s frame of 
reference to the navigating body’s frame of reference. 

3. A transformation to map the 3-D line-of-sight vector from the body frame to the 
navigation frame. After this transformation, the line-of-sight vector points from the 
observation point towards the feature point’s location in the navigation frame. 

This process is summarized in Figure 6. 

 
Figure 6. The transformations needed to reach the navigation frame from the camera frame. 
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While describing the transformation from pixel coordinates to vectors in the navigation 
coordinates, several placeholder variables and measured matrices will be used. For reference, these 
variables are summarized in Table 1. 

Table 1. Variables used in deriving triangulation and covariance equations. 

w Vector representing the u,v pixel coordinates of a feature point 
x Vector representing the line-of-sight vector in the camera frame. 
b Vector representing the line-of-sight vector in the body frame. 
d Vector representing the line-of-sight vector in the navigation frame 

b
cC  Rotation matrix used to rotate the vector x from the camera frame 

to the body frame 
n
bC  Rotation matrix used to rotate the vector b from the body frame to 

the navigation frame 
N Vector representing the position output by the navigation filter 
L Vector representing the lever arm from the user to the camera 

center, in the body’s frame of reference 
T Vector representing the location of the camera center in the 

navigation frame 

3.1 PINHOLE CAMERA AND CAMERA CALIBRATION MODEL 

The pinhole camera model is the classic model used to map a feature’s 3-D coordinates to 2-D 
pixel coordinates3. Its inverse can therefore be used to convert a feature’s pixel coordinates to a 
vector that is consistent with the Euclidian coordinates of the navigation frame. As shown in Figure 
7, the pinhole camera model maps 3-D points [x, y, z]T in the camera’s frame of reference to 2-D 
coordinates on an image. 

 
Figure 7. The pinhole camera model projects 3-D points onto a 2-D plane (figure  from Equation [2]). 
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To use pixel coordinates for triangulation, the calibration matrix of the camera that took the 
image must be known. The camera calibration matrix is used when modeling the projection of a 
scene onto an image sensor. This projection can be modeled by: 
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Here, u,v are the pixel coordinates of a feature point, K is the camera calibration matrix, [x,y,z]T 
are the coordinates of the feature point in the camera’s frame of reference, and λ is the depth scalar in 
the same units as the navigation frame.  

From Equation (8), we can recover a vector x, which points in the direction of the feature point in 
the camera’s frame of reference. This vector can also be described as the calibrated image of the 
feature point.  
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 wKx 1 . (11)

The vector x is a vector in the camera’s frame that points towards a feature point, meeting it at a 
depth λ. This is shown in Figure 8. 

Because of the camera calibration matrix, this λ is consistent with the depth that is solved for in 
the linear least squares problem above. Thus, an image coordinate can be mapped from the [u v 1]T 
coordinate system to a vector x in the camera frame that is now related to the navigation frame by a 
simple rigid body transformation. This x can be then transformed to the navigation frame to find the 
vector d that is needed for triangulation. 
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Figure 8. The vector x from Equation (11) points toward the feature point in the camera frame of 
reference. 

3.2 FROM THE CALIBRATED IMAGE TO THE BODY FRAME 

The calibrated image vector x now needs to be aligned to the navigation frame in order to 
triangulate the feature point. The navigation filter’s estimate of attitude can be used to align the 
camera frame with the navigation frame. However, the attitude reported by the filter is the orientation 
of some rigid body frame with respect the navigation frame, and this frame is not usually the same as 
the camera frame. Therefore, the calibrated image vector from the previous step has to be 
transformed to the user’s body frame before being transformed to the navigation frame. 

The transformation from camera frame to body frame is a simple rigid body transformation, i.e.,  
it consists of a translation and rotation. Here we will call the translation vector L, and the rotation 
matrix b

cC , and their effect is shown in Figure 9.  

 
Figure 9. The camera frame is translated and rotated away from the body frame. 

The vector L represents the lever arm between the camera center and the point whose location is 
output by the navigation filter. The vector L is defined in the body frame and thus its effect on the 
camera’s location in the navigation frame can easily be calculated. The lever is used to extract the 
camera’s location from the location of the navigation body. For the purposes of this paper, it is 
assumed that the b

cC  matrix and lever arm L are error-free and known. With this information, the 

vector x from the previous step can be transformed to a vector in the user’s body frame. 
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Converting from camera frame to body frame can be accomplished using the following formula: 

 xCb b
c . (12)

The calibrated image vector is now expressed in the body frame. The lever arm L will be used 
later to define the observation position. 

3.3 EULER ANGLES AND DIRECTION COSINE MATRIX 

The last step before triangulation can be completed is transforming the vector b from the body 
frame to the navigation frame to get the line-of-sight vector λidi+Ti. This is accomplished using 
information from the output of the navigation filter. This report assumes that the navigation filter 
outputs orientation in Euler angles in the NASA 3-2-1 aerospace sequence yaw (ψ), pitch (θ), roll 
(Φ)4. 

The transformation from body frame to navigation frame is accomplished using a 3 x 3 rotation 
matrix, here called n

bC . This rotation matrix is a function of the Euler angles as shown below, where 

c and s are used as shorthand for cosine and sine: 
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With a simple matrix multiplication, vectors in the body frame are transformed to the navigation 
frame. 

 bCd n
b . (14)

The n
bC  matrix is also used to solve for the position of the camera at the time the image was 

taken. The navigation filter outputs a position solution as a 3-vector, and the position of the camera is 
simply the output of the navigation filter, Ni, plus the rotated body-frame components of the lever 
arm L. Therefore, we can write: 

 LCNT
iii

n
b . (15)

We now have all the information needed to compute the depth of the feature point, and thus, the 
3-D location of the feature point. 

3.4 CLOSED-FORM SOLUTION FOR THE DIRECTION RAYS, CAMERA POSITION VECTORS, 
AND LANDMARK DEPTH 

Combining all of the above steps into a single equation for the direction vectors and location 
vectors, we get 

 wKCCd 1
i i

 b
c

n
b . (16)
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The values from Equations (11), (15), and (16) can be substituted into Equation (4) to calculate 
an estimate for the depths λ1, λ2. One important observation is that the magnitude of the direction 
vectors d1 and d2 only depend on K and the image coordinates w1 and w2, i.e., the magnitude of di 

equals the magnitude of xi: 

 
ii xd  . (17)

Thus, Equation (4) can be simplified into the following, which will simplify deriving the 
equations for estimating the error of this triangulation algorithm: 
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(18)

The partial derivatives of this equation contains fewer terms because the xi terms do not depend 
on b

cC or n
bC . It is therefore easier to take the Jacobian of this expression to estimate the error 

covariance of the solution. 

4. ESTIMATING THE QUALITY OF THE SOLUTION 

One way to characterize the quality of the triangulation solution is to calculate a covariance of 
the estimation errors as a function of pixel noise, camera position error, and camera attitude error. 
Since the relationship between X error, pixel error, and camera attitude error is non-linear, this will 
require a linearization of the triangulation equation. If the estimate of the landmark positions, X, 
generated by the triangulation method outlined above is to be used for navigation, tracking, or 
surveying, we will need to know if our estimate of X is accurate and be able to quantify that 
accuracy. The classic way of estimating the error covariance for a variable described by a non-linear 
function like the triangulation algorithm is through a first-order Taylor series expansion.  

The first-order Taylor series expansion treats each x, y, and z component of the position estimate 
X as a continuous, differentiable function of several input variables. The input variables will depend 
on the individual application. A first-order Taylor series expansion allows for an estimate of how 
errors in each of those input variables contribute to errors in the x, y, and z positions of the position 
estimate. As mentioned in Section 3.3, it is assumed the camera calibration matrix K, the camera to 
body transform b

cC , and the lever-arm L are known and error-free. Thus, this section assumes that 

there will be errors in the camera positions, camera attitudes, and the pixel coordinates of the 
landmark in each image. The camera position and attitude will come from a navigation filter that 
outputs a position solution in NED coordinates and orientation in 3-2-1 NASA-aerospace roll-pitch-
yaw Euler angles. Therefore, each observation of the landmark will have eight sources of error 
(errors in north, east, down, roll, pitch, yaw, u, and v coordinates). Thus, the landmark position X is 
estimated from two observations that each has eight sources of error. This results in X being 
described as a function of the following 16 variables:  

)(),,,,,,,,,,,,,,( 2222222211111111 zfvuDENvuDENf  X . 
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Taking the partial derivatives of these functions forms a Jacobian matrix, and multiplying this 
Jacobian with the prior estimates of error in each of the 16 variables produces a reliable estimate of 
the error of the triangulation solution. 

The Jacobian of X, which will be referred to as J , is a 3x16 matrix with the form: 
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The covariance estimation will be performed by the standard covariance transformation 
equation5: 
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where E{} is the expectation operator, XP  is the covariance of the point’s location, and Ω  is the 
16x16 covariance matrix of the 16 input variables that represent the camera’s positions and the visual 
landmark’s pixel coordinates.  

4.1 DERIVING THE POSITION JACOBIAN 

Calculating J  can be difficult, and to simplify the calculations we make the following 
observations. From the position solution Equation (5), we see that the position solution is mainly a 
function of six variables: λ, d and T for each of the two viewpoints. We will take advantage of this 
and use the chain rule to simplify the derivation of the Jacobian. Furthermore, symmetry in equation 
(5) also simplifies the derivation of the Jacobian. That is, the term iii Td  appears twice. This 
allows us to express the Jacobian as the sum of two matrices: 
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Here, 1J  and 2J  represent the Jacobians of the terms 111 Tdr1   and 2222 Tdr  , 

respectively. Each Jacobian iJ  contains the partial derivatives of ir  with respect to the 16 input 

variables: 
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The Jacobian of the expression iii Td   is found by taking the partial derivatives with respect to 

the 16 input scalars in z. The partial derivative ir  with respect to any scalar variable a is: 
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Next, the partial derivatives of di, iT ,and λi are determined. Recall from Equation (16) that the 

vector di is function of several change of bases operations on an image’s u,v coordinates. The partial 
derivatives of the depth vector di are therefore, 
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For this report, the camera-to-body transformation matrix c
bC  and the calibration matrix K are 

assumed to be known and invariant, so Equation (23) simplifies to 
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(24)

With the partial derivatives of di defined, the next terms of Equation (22) to define are the partial 
derivatives of iT . From Equation (15), we can see that iT  depends on n

bC , L, and Ni. The partial 

derivatives of iT  are therefore, 
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The lever-arm L is assumed known and invariant, so Equation (25) simplifies to 
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The partial derivatives of the depths, λi, are calculated in a similar fashion to the partial 
derivatives for the terms of di and iT . However, Equation (18) is more complex than the one used for 
the position equation. To simplify the process of taking the partial derivatives of this equation, we 
will take advantage of the division rule of derivatives. That is, we will separate the expression in 
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Equation (18) into two parts, the numerator and denominator and combine the partial derivatives of 
these parts: 
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We need the partial derivatives of the placeholder variables high and low to compute the partial 
derivatives of the depths. These partial derivatives are 
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The terms x1 and x2 in Equations (27) through (30) are the calibrated image vectors from 
Equation (11). The partial derivatives of xi are 
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With these derivatives of the intermediate variables di, iT ,and λi defined, only the partial 

derivatives of iw , iN , and n
bi

C need to be found. The variables iw , iN , and n
bi

C  are functions of the 

input variables only. Their partial derivatives are 
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With these partial derivatives defined, it is now possible to construct the Jacobian matrices 1J  

and 2J , and use them in Equation (21) to determine J . The Jacobian J  is now ready to be used to 
calculate the covariance of the feature point’s location using Equation (20). However, before that 
calculation can be performed, the input covariance matrix, Ω , must be defined. 

4.2 DEFINING THE INPUT COVARIANCE MATRIX 

The input covariance matrix contains the variances and co-variances of the 16 input variables. It 
is used to calculate a feature point’s 3x3 position covariance matrix after triangulation.  

The input covariance matrix (Figure 10) is a 16x16 positive-definite symmetric matrix. The 16 
input variables are: the camera position for each observation (in NED coordinates), the camera 
orientation for each observation (in roll-pitch-yaw Euler angles), and the feature position in each 
image (in u and v pixel coordinates). 

 
Figure 10. The shape and contents of the input covariance matrix. Regions 1 and 3 contain the NED, 
phi, theta, psi covariances for the first and second images, respectively. Regions 2 and 4 contain the 
u,v covariances for images 1 and 2.  

In Figure 10, the 16x16 input covariance matrix is divided into four regions. Regions 1 and 3 are 
the covariances of the outputs of the navigation filter. Regions 2 and 4 are the covariances of the 
feature location, in pixels. Region 1 is a 6x6 covariance matrix containing entries from a navigation 
system’s estimate of error: 
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where E is the expectation operator. Similarly region 3 is defined as 
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The expected values for each of these variables are obtained from the covariance estimate that is 
output by the navigation filter. 

Regions 2 and 4 in Figure 10 contain the uncertainty in the feature point’s u,v coordinates for 
each picture. These values are characteristic of the feature point detection algorithm. 

Region 2 is defined as 
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Similarly, Region 4 is defined as 
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With these regions of Ω  defined, they must be populated with actual values before Equation (20) 
can be used to calculate xP . The values for each entry in regions 1 and 3 are output from the 
navigation filter, and regions 2 and 4 are defined by the choice of feature point detection algorithm. 
Once Ω  is complete, then J and Ω  can be used in Equation (20) to solve for xP . With this xP  and 

X from Equation (5), we now have an estimate for the position of the feature point and an estimate of 
the uncertainty of the position. 

5. ESTIMATING PROJECTION ERROR 

In addition to estimating a landmark’s coordinates from a sequence of images, we can estimate 
where in an image a landmark should appear given its coordinates and an estimate of the camera’s 
location. That is, using the pinhole camera model, we can predict the pixel coordinates of a visual 
landmark. More formally, given a landmark’s position in the navigation frame as well as estimates of 
the camera’s position and attitude, we can estimate iu  and iv , the pixel coordinates of a feature 

point, and uvP , the error covariance of the estimation of the pixel coordinates. Combined with 

estimates of the error in the camera position and landmark location, this pixel error estimate can be 
used for feature matching, feature-point integrity algorithms, or tightly coupled visual navigation. 
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We will first derive a closed-form equation for estimating the pixel coordinates of a feature point, 
and then use the Jacobian, uvJ ,of this closed-form equation to estimate the error covariance matrix. 

To estimate a visual-landmark’s pixel coordinates, one simply rearranges the triangulation equations 
from Equation (1) to obtain 
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Substituting the results from Equations (16) and (17) obtains 
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Rearranging Equation (36) to solve for u and v results in 
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Here, iλ is the predicted depth of the landmark in the scene. It is obtained through a similar 
equation: 
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(38)

We now have a simple set of equations for estimating the pixel coordinates of a feature point. 
These equations can also be used to define an estimate of the error of the projection.  

The method used to estimate the error is the same as in Section 4—the first-order Taylor 
expansion method of linearization. To simplify the partial derivatives of the projection equation 

described in Equation (37), we first note that both the equations for iu , iv , and iλ  contain the 

expression     T)(XCCK
TT

n
b

b
c . We will call this expression h , as it represents the homogenous 

coordinates of the feature point on the imaging plane6:  
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With the homogenous coordinates defined, we can express the pixel coordinates and depth of a 
feature point as a function of h : 
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(40)

   .100λ ii h  (41)

It is easy to take the partial derivatives of these expressions to use in the calculation of the 
Jacobian matrix: 



18 

 

 2λ

aa
λ

a i

i
ii

i
i

h
λh

w 









  

(42)

   .
a

100
a

λ





 ii h

  
(43)

With the partial derivatives of the pixel coordinates and depth derived in terms of the 
homogenous image coordinates, we now need to calculate the partial derivatives of the homogenous 
image coordinates: 
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The partial derivatives of K , b
cC , n

bC  and T are the same as the ones derived in Section 4.1. 

Under the assumptions of a constant lever arm, camera calibration, and 
b
cC , the pixel coordinates of 

a feature points are a function of nine variables: the world coordinates of the feature point( three 
degrees of freedom), and the position and orientation of the camera (six degrees of freedom). With a 

NED coordinate frame and 3-2-1 NASA aerospace Euler angles, the Jacobian matrix uvJ can be 
defined as follows: 
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Here, the subscript f indicates variables from the navigation filter’s current position and attitude 
estimates and the subscript i represents the world coordinates of the ith feature point. Note that 

  T
iiiw 1vu  is a 3-vector, with a constant third entry, and therefore the third row of wJ is 

removed by multiplying 







010

001
 by wJ . 
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With this Jacobian defined, the covariance of the projection can be calculated using the standard 
method: 

   .TJPJP uvinuvuv   (46)

Here, uvP is the predicted covariance matrix for the uv pixel errors, and inP  is the 9x9 covariance 

matrix of the nine input variables (camera position, camera orientation, and landmark location). The 
performance of this covariance estimator will be discussed in Section Error! Reference source not 
found.. 

6. EVALUATION OF PERFORMANCE 

With algorithms to estimate errors in landmark triangulation or landmark projection defined, we 
must now test how accurately the algorithms estimate the magnitude and direction of errors. To 
evaluate the performance of the triangulation error covariance estimate, a Monte Carlo simulation 
was run on the triangulation algorithm. The algorithm was given inputs of known variance. The 
distribution of the outputs of the triangulation algorithm was compared to the distribution described 
by the output of the covariance estimation algorithm. The variances of the inputs were changed to 
illustrate the effect of camera position noise and camera orientation noise separately. 

6.1 TRIANGULATION SIMULATION SET-UP 

The Monte Carlo simulation was run assuming a system with two cameras placed side-by-side 
and triangulating a feature point. The experiment set-up is shown in Figure 11. 

The two cameras were facing west, with a feature point located approximately 50 meters to the 
west. The cameras were spaced 10 meters apart in the north direction, and the feature point’s 
projection was calculated using the same camera calibration matrix for each camera. The exact 
parameters are listed in Table 2. 

 
Figure 11. The Monte Carlo simulation set-up. 
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Table 2. Mean values used for Monte Carlo simulation. 

Feature 
Point 

Location 
X  

(NED) 













 414.1
718.2
14.3

meters 

b
cC  













010
001
100

(dimensionless) 

K  













100
3.5602.21330
1.47509.2136

(dimensionless)

n
b

n
b 21

CC ,  














100
001
010

(dimensionless) 

1T  













0
50

5
(meters) 

2T  













0
50
5

(meters) 

The simulation was run under 12 different configurations with varying magnitudes of position, 
attitude, and pixel error. Each run consisted of 100,000 trials. The noise magnitudes were set up as 
indicated inTable 3. The standard deviations were the same for camera positions and orientations. 

The performance of the error covariance estimation was evaluated by calculating the 
Mahalanobis distance of the error of each trial in each run. The Mahalanobis distance is calculated by 

comparing the observed error, XX ˆ , with the expected error as predicted by the covariance matrix. 
The Mahalanobis distance, m , is calculated using the following formula: 

      XXPXX
1

x

T


 ˆˆˆ2m . (47)

Here, xP̂  is the 3x3 covariance matrix calculated using Equation (20), X̂  is the output of the 

triangulation algorithm given the noisy inputs, and X  is the true landmark location. 

The Mahalanobis distance is a dimensionless distance that follows a chi-square distribution with 
the same number of degrees of freedom as the covariance matrix7. Thus, the performance of a three-
dimensional position estimate was evaluated by comparing the distribution of the Mahalanobis 
distances, m , of the errors with the expected 3-degree-of-freedom 2χ -distribution. 
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Table 3. Test Conditions. 

Run  Variables Standard Deviation  
A. Roll,pitch,yaw 

N,E,D 
0.01 degrees 
1 meter 

B. Roll,pitch,yaw 
N,E,D 

0.01 degrees 
5 meters 

C. Roll,pitch,yaw 
N,E,D 

0.01 degrees 
10 meters 

D. Roll,pitch,yaw 
N,E,D 

1 degree 
1 meter 

E. Roll,pitch,yaw 
N,E,D 

1 degree 
5 meters 

F. Roll,pitch,yaw 
N,E,D 

1 degrees 
10 meters 

G. Roll,pitch,yaw 
N,E,D 

5 degrees 
1 meter 

H. Roll,pitch,yaw 
N,E,D 

5 degrees 
5 meters 

I. Roll,pitch,yaw 
N,E,D 

5 degrees 
10 meters 

J. Roll,pitch,yaw 
N,E,D 

10 degrees 
1 meter 

K. Roll,pitch,yaw 
N,E,D 

10 degrees 
5 meters 

L. Roll,pitch,yaw 
N,E,D 

10 degrees 
10 meters 

6.2 TRIANGULATION SIMULATION RESULTS 

The results from the Monte Carlo simulation are shown in Figure 12. The results from each of the 
twelve runs are arranged to show how the performance varies as a function of position noise 
magnitude and angle noise magnitude. 

Figure 12 contains a top-down view of the distribution of points. The largest uncertainty is in the 
direction perpendicular to the camera plane. This is because the errors in the locations and 
orientations of the two cameras were uncorrelated, and thus the uncertainty in the parallax between 
the two views of the landmark caused the depths to be miscalculated. Nevertheless, because the 
covariance of the input errors was known, the distribution of the errors in the triangulation solution 
was accurately predicted. 

For smaller values of Euler angle noise, the error distribution is accurately predicted by the 
algorithm presented in this report. This is expected, as the camera triangulation equation is a linear 
function of the camera position but a nonlinear (trigonometric) function of the camera orientation’s 
Euler angles. Thus, the larger the error in angle, the less accurate the Taylor expansion will be. 
Furthermore, at larger errors for angles the position error becomes biased, and points tend to be 
triangulated at a location closer than the truth value. These biases, however, appear at large values of 
angle noise standard deviation (10 degrees), which is much larger than the gyro noise from tactical-
grade inertial measurement units. For example, if triangulation for a visual landmark is performed on 
pictures taken 10 seconds apart, Euler angle standard deviations are rarely more than 1 degree. 
Tactical-grade inertial measurement units (IMUs) exhibit gyro noise that is usually on the order of 

0.03-0.1 hr/  or 1.8-6 Hz// hr 8. A navigation system with 0.1 hr/ Gaussian gyro noise, 

sampling the gyro at 100 Hz, would see uncorrelated gyro rate errors of about 0.0167 sec/  per 
sample. Summed over 10 secs (1,000 samples), these gyro rate errors would result in Euler angle 
errors with standard deviations of about 0.00528 degree per axis. 
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 shows similar figures for other grades of IMUs. 

Because of the small magnitude of random Euler angle errors from even inexpensive gyroscopes, 
the presented algorithm for triangulation is suitable for triangulation from navigation systems. For 
triangulation with camera attitudes that do not have quality attitude measurements, the presented 
method accurately estimates the triangulation error for angle noise with a standard deviation smaller 
than 5 degrees. Figure 13 illustrates the accuracy of the triangulation error-estimation in a different 
fashion. Here, the distribution of Mahalanobis distances is compared to the 2χ -distribution for three 
degrees of freedom. 

As shown in Figure 13, for small values of angle variance the error estimate is accurate, and the 
expected error distribution follows the actual error distribution. However, as the standard deviation of 
the Euler angle noise approaches 5 degrees for roll, pitch, and yaw, the error estimate begins to 
degrade. As the position noise increases for a fixed amount of angle noise, the position noise has a 
larger weight on the final error than the angle noise and the estimate regains its accuracy. 

Table 4. Comparison of random noise from different grades of gyroscopes9. 

 Silicon-Vibratory 
MEMs 

Tactical-grade IFOGs Aviation-Grade 
Spinning Mass 

Random gyro rate noise 1 hr/  0.1 hr/  0.002 hr/  

Random gyro rate noise per 
sample at100 Hz 

0.167 sec/  0.0167 sec/  3.3x10-4 sec/  

Random Euler angle error 
standard deviation after 10 
seconds (1,000 samples at  
100 Hz) 

0.0528° 0.00528° 1.0x10-5° 

Random Euler angle error 
standard deviation after 90 
seconds (9,000 samples at  
100 Hz) 

0.1584° 0.01584° 3.0x10-5° 
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Figure 12. The spread of the triangulation solution values in the North/East plane. The x-axis in 
each sub-chart represents east coordinates, in meters; the y-axis represents north coordinates, 
in meters. The measured covariance, represented by dashed black ellipses, is the covariance 
calculated from the samples. The expected covariance, represented by solid red ellipses, is the 
distribution around the true point location calculated by the covariance estimation algorithm. For 
small values of Euler angle noise variance (1 degree or less), the predicted distribution is 
accurate enough that the expected and measured covariance ellipses overlap in the figure.  
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Figure 13. The distribution of errors versus the expected distribution of errors. The blue lines 
represent observed distributions while the black lines represent expected distributions. The 
observed and expected distributions match up well for all cases except for large attitude errors 
combined with small camera position errors (Figures g and j). 
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6.3 PROJECTION COVARIANCE ESTIMATION 

The projection covariance estimator derived in Section 5 was verified using a Monte Carlo 
simulation. In this simulation, a point with a noisy location was projected onto a camera with noisy 
position and attitude. The results of this simulation are shown in Figure 14. 

Figure 14 shows that the observed distribution of uv coordinates follows the expected 
distribution. That is, the shape of the error distribution on the uv-plane is accurately predicted. 

To evaluate the performance of the error estimate, the Mahalanobis distance is calculated using 
the following equation: 
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Here, uvP̂  is the covariance matrix calculated using Equation (46), û  and v̂ are from the output of 

the projection estimation Equation (37) given the noisy inputs, and u  and v  are the true pixel 
coordinates. 

The Mahalanobis distances for the u and v errors follow a 2-dof 2χ -distribution, as shown in 
Figure 15. 

The distribution of the Mahalanobis distances of the u,v coordinate errors follows the expected 
Chi-square distribution. That is, the magnitude of error is accurately predicted. 

The simulation results indicate that the projection covariance estimator is accurate when 
characteristics of the input noise are known. 

 

Figure 14. The results of the Monte Carlo simulation of UV projection error.  
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Figure 15. The distribution of Mahalanobis distances for the Monte Carlo simulation of UV projection 
errors.  

The distribution of the Mahalanobis distances of the uv coordinate errors follows the expected 
Chi-square distribution. That is, the magnitude of error is accurately predicted. 

The simulation results indicate that the projection covariance estimator is accurate when 
characteristics of the input noise are known. 

7. CONCLUSION 

This report presented an algorithm for triangulating the location of a visual landmark from two 
camera observations. A method for estimating the accuracy (covariance) of the triangulation solution 
was also presented. For the most part, the covariance estimation algorithm described in this paper 
provides an accurate estimate of the triangulation error. However, it is important to note that this 
algorithm is limited to applications where Euler angle noise is smaller than 5 degrees. This is because 
the main decider of the accuracy of the error estimate is the magnitude of the Euler angle noise. As 
the magnitude of Euler angle noise approaches 5 degrees for each axis, the linear approximations 
made by the presented algorithm no longer accurately predict errors. Thus, for Euler angle noise 
greater than 5 degrees, the triangulation results and error estimates become un-reliable. However, 
most navigation systems have an Euler angle noise standard deviation much smaller than 5 degrees 
(on the order of half a degree for inexpensive microelectromechanical systems (MEMS) or 
magnetometers)10, so this non-linearity is a non-issue. Therefore, in systems where the camera’s 
attitude is determined using inexpensive MEMS gyros or better, the linear triangulation method and 
its associated covariance estimator remain useful for mapping visual landmarks and estimating the 
position errors. 
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